Excitotoxicity and stroke: Identifying novel targets for neuroprotection

نویسندگان

  • Ted Weita Lai
  • Shu Zhang
  • Yu Tian Wang
چکیده

Excitotoxicity, the specific type of neurotoxicity mediated by glutamate, may be the missing link between ischemia and neuronal death, and intervening the mechanistic steps that lead to excitotoxicity can prevent stroke damage. Interest in excitotoxicity began fifty years ago when monosodium glutamate was found to be neurotoxic. Evidence soon demonstrated that glutamate is not only the primary excitatory neurotransmitter in the adult brain, but also a critical transmitter for signaling neurons to degenerate following stroke. The finding led to a number of clinical trials that tested inhibitors of excitotoxicity in stroke patients. Glutamate exerts its function in large by activating the calcium-permeable ionotropic NMDA receptor (NMDAR), and different subpopulations of the NMDAR may generate different functional outputs, depending on the signaling proteins directly bound or indirectly coupled to its large cytoplasmic tail. Synaptic activity activates the GluN2A subunit-containing NMDAR, leading to activation of the pro-survival signaling proteins Akt, ERK, and CREB. During a brief episode of ischemia, the extracellular glutamate concentration rises abruptly, and stimulation of the GluN2B-containing NMDAR in the extrasynaptic sites triggers excitotoxic neuronal death via PTEN, cdk5, and DAPK1, which are directly bound to the NMDAR, nNOS, which is indirectly coupled to the NMDAR via PSD95, and calpain, p25, STEP, p38, JNK, and SREBP1, which are further downstream. This review aims to provide a comprehensive summary of the literature on excitotoxicity and our perspectives on how the new generation of excitotoxicity inhibitors may succeed despite the failure of the previous generation of drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential molecular targets for translational stroke research.

The stroke research community is currently at a crossroads, and a shift in focus is necessary to propel basic research forward to develop clinically effective therapeutics. In-depth analysis of the past failures and imposing more stringent standards on future basic research experiments will greatly improve the success of translational research. The purpose of this review is to outline proposed ...

متن کامل

Novel Treatment Strategies for Neurological and Neurodegenerative Diseases

In recent years, preclinical and basic science efforts have resulted in significant advances in developing and testing novel preclinical models and assessing potential therapeutic agents. Many of these attempts have focused on neuroprotective strategies. The concept of neuroprotection is based on the assumption that neurodegenerative processes associated with disease and/or aging can be slowed,...

متن کامل

P1: Dextran Curcumin Promotes Novel Object Recognition Memory in Rats after Ischemic Stroke

Ischemic stroke causes the depletion of energy and induces excitotoxicity and neuroinflammation in the brain that results from thrombotic blockage. Cerebral ischemia leads to many types of memory loss, including impairment of working, spatial and object recognition memoreis. Curcumin shows strong anti-oxidoinflammatory activities but it terapathics limited by its low solubility in water and cor...

متن کامل

Poly-arginine and arginine-rich peptides are neuroprotective in stroke models.

Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate pre...

متن کامل

Prevention of in vivo excitotoxicity by a family of trialkylglycines, a novel class of neuroprotectants.

Excitotoxicity has been implicated in the etiology of ischemic stroke and chronic neurodegenerative disorders. Hence, the development of novel neuroprotectant molecules that ameliorate excitotoxic brain damage is vigorously pursued. We used a neuroprotection-based cellular assay to screen a synthetic combinatorial library of N-alkylglycine trimers. Two compounds (6-1-2 and 6-1-10) that efficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Progress in Neurobiology

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2014